Likelihood-based comparison of stable Paretian and competing models: Evidence from daily exchange rates
نویسنده
چکیده
Considering alternative models for exchange rates has always been a central issue in applied research. Despite this fact, formal likelihood-based comparisons of competing models are extremely rare. In this paper, we apply the Bayesian marginal likelihood concept to compare GARCH, stable, stable GARCH, stochastic volatility, and a new stable Paretian stochastic volatility model for seven major currencies. Inference is based on combining Monte Carlo methods with Laplace integration. The empirical results show that neither GARCH nor stable models are clear winners, and a GARCH model with stable innovations is the model best supported by the data.
منابع مشابه
The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran
This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...
متن کاملStable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability
A fast method for estimating the parameters of a stable-APARCH not requiring likelihood or iteration is proposed. Several powerful tests for the (asymmetric) stable Paretian distribution with tail index 1 ă α ă 2 are used for assessing the appropriateness of the stable assumption as the innovations process in stable-GARCH-type models for daily stock returns. Overall, there is strong evidence ag...
متن کاملEstimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange
This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...
متن کاملStatistical Inference in Autoregressive Models with Non-negative Residuals
Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...
متن کاملBayesian analysis of GARCH and stochastic volatility: modeling
This paper develops a Bayesian model comparison for two broad major classes of varying volatility model, GARCH and stochastic volatility (SV) models on financial time series. The leverage effect, jumps and heavy-tailed errors are incorporated into the two models. For estimation, the efficient Markov chain Monte Carlo methods are developed and the model comparisons are examined based on the marg...
متن کامل